EECE 210

Final Exam, December 18, 2013
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3% (Primal Question)
A.
The switch is closed at t = 0, with the capacitor initially charged to 5 V in the polarity of vC. Derive the expression for vC as a function of time for t ( 0.
Solution: The initial value of vC is 5 V. It final value is zero. ( = RC = 0.5 s. It follows that 
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Version 1: VC0 = 5 V, 
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Version 2: VC0 = 10 V, 
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Version 3: VC0 = 15 V, 
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Version 4: VC0 = 20 V, 
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Version 5: VC0 = 25 V, 
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3% (Primal Question)
B.
The switch is closed at t = 0, with the inductor initially uncharged. Derive the expression for i as a function of time for t ( 0, given VSRC = 1 V.
Solution: The initial value of i is zero, and the final value is 2 A. ( = L/R = 2 s. It follows that 
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Version 1: VSRC = 1 V, 
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Version 2: VSRC = 2 V, 
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Version 3: VSRC = 3 V, 
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Version 4: VSRC = 4 V, 
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Version 5: VSRC = 5 V, 
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3% (Primal Question)
C.
When the switch is closed at t = 0, the initial voltage across the capacitor is 10 V and the initial current through the inductor is 1 A. Determine the values of vC and iL just after the switch is closed, given R = 2 (.
Solution: The values of vC and iL remain the same just after switching as just before switching.
Version 1: VC0 = 10 V, IL0 = 1 A
Version 2: VC0 = 15 V, IL0 = 2 A
Version 3: VC0 = 20 V, IL0 = 3 A
Version 4: VC0 = 25 V, IL0 = 4 A
Version 5: VC0 = 30 V, IL0 = 5 A.
3% (Primal Question)
D.
Specify whether the response for t ( 0 in the preceding problem is overdamped, critically damped, or underdamped if R = 2 (.
Solution: 
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 rad/s. ( = R/2L = R/2. The response is critically damped if R = 4 (, is overdamped if R > 4 (, and is underdamped if R < 4 (.
Version 1: R = 2 (, response is underdamped
Version 2: R = 3 (, response is underdamped
Version 3: R = 4 (, response is critically damped
Version 4: R = 5 (, response is overdamped
Version 5: R = 6 (, response is overdamped.
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Determine Req between terminals ‘ab’, assuming all resistances are 1 (.
A. 6 (
B. 3.6
C. 2.4 (
D. 1.2 (
E. 4.8 (
Solution: Two R’s are in parallel and the combination in series with R is 3R/2. In parallel with R, this gives 3R/5. Hence, Req = 6R/5.
Version 1: R = 1 (, Req = 6/5 = 1.2 (
Version 2: R = 2 (, Req = 12/5 = 2.4 (
Version 3: R = 3 (, Req = 18/5 = 3.6 (
Version 4: R = 4 (, Req = 24/5 = 4.8 (
Version 5: R = 5 (, Req = 30/5 = 6 (.
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The voltage vL is applied to the initially uncharged inductor. Determine the value of t at which iL = -0.5 A.
A. 4 s
B. 3.75 s

C. 4.25 s
D. 3.5 s
E. 3.25 s
Solution: iL = -K A when the flux linkage ( in the inductor reverses and is -K(1 = -K Vs. At t = 3 s, the net positive area under the curve is: (1/2)2(2 – (1/2) 2(1 = 1 Vs. The time beyond 3 s at which the area becomes -K Vs is (K + 1). This occurs at t = 3 + (K + 1)/2 = 3.5 + K/2 s. 
Version 1: i = -0.5 A, t = 3.5 + 0.5/2 = 3.75 s
Version 2: i = -1 A, t = 3.5 + 1/2 = 4 s
Version 3: i = -1.5 A, t = 3.5 + 1.5/2 = 4.25 s
Version 4: i = -2 A, t = 3.5 + 2/2 = 4.5 s
Version 5: i = -2.5 A, t = 3.5 + 2.5/2 = 4.75 s.
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3.
Determine the energy stored in the circuit under steady-state conditions, given VSRC = 1 V (Hint: consider Leq for energy calculation). 
A. 14 J

B. 10.5 J
C. 1.75 J
D. [image: image68.emf]v
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Solution: Leq = 2 + 4 – 2 = 4 H. The circuit under steady-state conditions is a shown, with inductors acting as short circuits and capacitors as open circuits. The voltage across the capacitors is VSRC/2, and the energy stored is 
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Version 1: VSRC = 1 V, W = 
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Version 2: VSRC = 2 V, W = 
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Version 3: VSRC = 3 V, W = 
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Version 4: VSRC = 4 V, W = 
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Version 5: VSRC = 5 V, W = 
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4.
Determine Zeq between terminals ‘ab’, given all capacitances are 1 F, all inductors are 1 H, and ( = 1 rad/s.

A. 0

B. j2.75 (
C. j4.89 (
D. -j2.75 (
E. -j4.89 (
Solution: Leq = 1 + 1/2 +1/3 = 11/6 H; Ceq is 1 F in series with 2 F, in series with 3F. The last two are 6/5 F, and Ceq = 6/11 F. Zeq = j(11(/6 – 11/6().
Version 1: ( = 1 rad/s; Zeq = j(11(/6 – 11/6() = 0

Version 2: ( = 2 rad/s; Zeq = j(11(2/6 – 11/6(2) = j2.75 (
Version 3: ( = 3 rad/s; Zeq = j(11(3/6 – 11/6(3) = j4.89 (
Version 4: ( = 4 rad/s; Zeq = j(11(4/6 – 11/6(4) = j6.88 (
Version 5: ( = 5 rad/s; Zeq = j(11(5/6 – 11/6(5) = j8.8 (.
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5.
Determine iC as a phasor, given vSRC = sin2t V, and assuming cos2t to have zero phase angle.
A. 1.41(-45( V
B. 0.707(90( V
C. 0.707(+45( V
D. 1.41(45( V
E. [image: image71.emf]4 H
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Solution: vSRC = Vmsin2t = Vmcos(2t – 90() V; ( = 2 rad/s, so that the circuit in the frequency domain is as shown. From KCL, IC = (1 + j)Ix. From KVL around the LHS mesh, Vm(-90( = j2Ix – j2(1+ j)Ix = 2Ix = 2IC/(1 + j). Hence, IC = 0.5(1 + j)(Vm(-90() = 0.5
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Version 1: Vm = 1 V, IC = 0.5
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Version 2: Vm = 2 V, IC = 0.5
[image: image28.wmf]2

(2)(-45( V = 1.41(-45( V
Version 3: Vm = 3 V, IC = 0.5
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Version 4: Vm = 4 V, IC = 0.5
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Version 5: Vm = 5 V, IC = 0.5
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6.
Determine Norton’s current
looking into terminals ‘ab’ (not including RL), given Vm = 1 V.

A. 7.07(45( A

B. 3.54(-45( A
C. 3.54(0( A

D. 3.54(45( A

E. [image: image73.emf]+
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Solution: The independent current source and the 1 ( resistor in series with the dependent source are redundant as far as IN is concerned. The circuit becomes a shown. IN = Ix; the parallel impedance of L and C is; (-j2)(j)/(-j2 + j) = j2 (. From KVL, Vm(45( = (2 + j2)Ix. It follows that IN = Ix = Vm(45(/2(1 + j) =
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Version 1: Vm = 10 V, IN = 
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Version 2: Vm = 20 V, IN = 
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Version 3: Vm = 30 V, IN = 
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Version 4: Vm = 40 V, IN = 
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Version 5: Vm = 50 V, IN = 
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7.
Determine ZTh looking into terminals ‘ab’, given Z = j9 (.

A. Infinite
B. j4 (
C. -j2.5 (
D. -j4 (
E. j8 (
[image: image75.emf]
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Solution: Applying a test source VT, with the current source replaced by an open circuit, it is seen that IT = 2.25VT/Z, which gives ZTh = 4Z/9 (.
Version 1: Z = j9 (, ZTh = j4 (
Version 2: Z = -j9 (, ZTh = -j4 (
Version 3: Z = j18 (, ZTh = j8 (
Version 4: Z = -j18(, ZTh = -j8 (
Version 5: Z = j4.5 (, ZTh = j2 (.
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8.
The capacitor is charged to 10 V at the instant the switch is closed at t = 0. Determine the damping coefficient ( of the circuit for t > 0, given R = 1 (.
A. 1 rad/s
B. 1.5 rad/s
C. 0.125 rad/s
D. [image: image77.emf]j30 
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Solution: Using the T-equivalent circuit, (-1)(2/(2 – 1) = -2 H. In series with 3 H this gives 1 H. Hence, ( = R/2L = R/2 rad/s.
Version 1: R = 1 (, ( = R/2 = 0.5 rad/s
Version 2: R = 2 (, ( = R/2 = 1 rad/s
Version 3: R = 3 (, ( = R/2 = 1.5 rad/s
Version 4: R = 4 (, ( = R/2 = 2 rad/s
Version 5: R = 5 (, ( = Ri2 = 2.5 rad/s.
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9.
The switch is opened at t = 0 after being closed for a long time. Determine iC just after the switch is opened, given VSRC = 1 V.

A. 0.5 mA

B. 0
C. 2 mA
D. 1.5 mA

E. 1 mA
Solution: Before the switch is opened, iL = VSRC/2 mA, directed downward. After the switch is opened, iC = iL = 0.5 mA.
Version 1: VSRC = 1 V, iC = 0.5 mA

Version 2: VSRC = 2 V, iC = 1 mA
Version 3: VSRC = 3 V, iC = 1.5 mA
Version 4: VSRC = 4 V, iC = 2 mA
Version 5: VSRC = 5 V, iC = 2.5 mA.
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10.
The circuit is in a steady state, with i = sin(0t A. Determine the smallest t > 0 at which the instantaneous energy stored in the inductor is equal to that stored in the capacitor, given L = 1 H.
A. 1.57 s
B. 1.76 s
C. 3.51 s
D. 0.79 s
E. 1.36 s
Solution: If i = Imsin(0t A, v = Ldi/dt = (0LImcos(0t V. When the two instantaneous energies are equal, 
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Version 1: L = 1 H, 
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Version 2: L = 2 H, 
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Version 3: L = 3 H, 
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Version 4: L = 4 H, 
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Version 5: L = 5 H, 
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11.
The switch is closed at t = 0, after being open for a long time. It is found that iL(t) = 
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 A. Determine R, given k = 1.
A. 0.6 (
B. 1 (
C. 0.667 (
D. 0.75 (
E. 0.625 (
Solution: (0 = 1 rad/s. since the response is critically damped. C = 
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Version 1: k = 1; R = (1 + k)/2k = 2/2 = 1 (
Version 2: k = 2; R = (1 + k)/2k = 3/4 = 0.75 (
Version 3: k = 3; R = (1 + k)/2k = 4/6 = 0.667 (
Version 4: k = 4; R = (1 + k)/2k = 5/8 = 0.625 (
Version 5: k = 5; R = (1 + k)/2k = 6/10 = 0.6 (.
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12.
The switch is opened at t = 0, after being closed for a long time. Determine dv/dt just after the switch opens, given ISRC = 1 mA.
A. -1 V/ms
B. -2 V/ms
C. 0
D. 1 V/ms
E. 2V/ms
Solution: Before the switch opens, v = 0 and iL = 0. Both remain zero just after the switch is opened. ISRC will therefore initially pass through the capacitor, which makes ISRC = -Cdv/dt, It follows that dv/dt = -ISRC/C = -1(10-3/1(10-6 = -103 V/s = -1 V/ms.
Version 1: ISRC = 1 mA, dv/dt = -1 V/ms
Version 2: ISRC = 2 mA, dv/dt = -2 V/ms
Version 3: ISRC = 3 mA, dv/dt = -3 V/ms
Version 4: ISRC = 4 mA, dv/dt = -4 V/ms
Version 5: ISRC = 5 mA, dv/dt = -5 V/ms.
[image: image82.emf]4 



+

–

v

O

i

O

8 A

–

+

0.4 H

2i

O 

i

x

13%

13.
Derive TEC looking into terminal ‘ab’ (7 grades for VTh, 6 grades for ZTh).
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Solution: Replacing the linear transformer by its T-equivalent circuit, it is seen that on open circuit, the -j40 ( in series with

j10 ( gives -j30 (. In parallel
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-j5 ( is zero, so that both terminals of this inductor are at a voltage 5IX. The current in the -j5 ( impedance is ISRC – Ix. From KVL, 10Ix + j5(ISRC – Ix) = 5Ix. This gives 
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 A, and 5IX = 20 V. It follows that VTh = Vab = 
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On short circuit, the voltage of the dependent source is still 20 V. The parallel impedance of j10 ( and j30 ( is j7.5 (. The current through the j5 ( impedance is 20/(j12.5) A, From current division, ISC is this current multiplied by 3/4. This gives ISC = -j1.2 A. It follows that ZTh = (80/3)/(-j1.2) = j200/9 = j22.22 (.
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14.
Determine Zin looking into terminals ‘ab’.
Solution: Let a test voltage of 5VT be applied. The voltages across the two windings are 4VT and VT. w The current in the RC branch is 
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. The current in the inductive branch is: 
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Ix = 0.4VT(1 + j) – 0.25VT(1 – j) = VT(0.15 + j0.65). From the mmf equation, 4I1 + I1 + VT(0.15 + j0.65) = 0, which gives I1 = -VT(0.03 + j0.13); I = 0.4VT(1 + j) – VT(0.03 + j0.13) = VT(0.37 + j0.27); Zin = 5VT/VT(0.37 + j0.27) = 10.92(-36.12( = 8.818 – j6.435 (.
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15
The switch closes and opens repeatedly at regular intervals, resulting in a periodic voltage v that alternates between an upper level of 4 V and a lower level of 2 V. (a) Derive expressions for v as a function of time for the interval 0 ( t ( t1 and the interval t1 ( t ( t2 (4 grades each); (b) determine t1 and t2 (2 grades and 3 grades).
Solution: (a) For 0 ( t ( t1, ( = 0.5 ms, and 
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, t is in ms; for t1 ( t ( t2, ( = 1 ms, and 
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(b) For 0 ( t ( t1, 
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, t1 = 0.5ln2 = 0.35 s. For t1 ( t ( t2, 
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; t2 = ln2 + 0.5ln2 = 1.5ln2 = 1.04 s.
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16.
The switch is moved at t = 0 from position ‘a’ to position ‘b’, after being in position ‘a’ for a long time. Determine: iO and vO as functions of time for t ( 0 (5 grades and 6 grades).
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Solution: Leq = 0.2 + 0.4 – 0.2 = 0.4 H. The circuit for t ( 0 is as shown, where IO0 = 12 A; Ix0 = 20 A; VO0 = 24 – 80 = -56 V. In the steady state, VOS = 0, and 2IOS – 4(IOS + 8) = 0, so that IOS = -16 A. The resistance seen by the inductor is obtained by applying a test source, with the independent soirce set to zero. VT + 2IT = 4IT, which gives Reff = 2 (, and R/L = 5 s-1. It follows that: 
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V. As a check, LdiO/dt = 0.4((28)(-5)
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